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Streamwise vortices in heated boundary layers 

By PHILIP HALL 
Department of Mathematics, Manchester University, Manchester M 13 9PL, UK 
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The nonlinear instability of the boundary layer on a heated flat plate placed in an 
oncoming flow is investigated. Such flows are unstable to stationary vortex instabilities 
and inviscid travelling wave disturbances governed by the Taylor-Goldstein equation. 
For small temperature differences the Taylor-Goldstein equation reduces to Rayleigh’s 
equation. When the temperature difference between the wall and free stream is small 
the preferred mode of instability is a streamwise vortex. It is shown in this case that the 
vortex, assumed to be of small wavelength, restructures the underlying mean flow to 
produce a profile which can be massively unstable to inviscid travelling waves. The 
mean state is shown to be destabilized if the Prandtl number is less than unity. 

1. Introduction 
Our concern is with the nonlinear instability of forced-convection boundary layers 

over horizontal heated flat plates and the subsequent secondary instabilities of these 
flows. In a previous paper, Hall & Morris (1992) considered the linear aspects of 
longitudinal vortex instabilities. In general it was shown that this convective instability 
develops in a non-parallel manner and cannot be adequately described by a quasi- 
parallel stability theory of the type discussed by for example Wu & Cheng (1976), 
Moutsoglou, Chen & Cheng (1981) and Chen & Cheng (1984). At higher values of the 
controlling stability parameter, the Grashof number, non-parallel effects can be taken 
care of in a self-consistent asymptotic manner provided that the vortex wavelength is 
not too large. In the present paper we will be concerned with extending the work of 
Hall & Morris into the strongly nonlinear regime. In addition we will be concerned 
with the subsequent three-dimensional unsteady breakdown of the flow induced by 
large-amplitude vortex structures. 

In addition to longitudinal vortex structures, both Tollmien-Schlichting and inviscid 
waves are possible causes of instability in a heated boundary layer. If buoyancy forces 
are not too large, then the inviscid modes are found to satisfy Rayleigh’s equation, 
otherwise they satisfy the Taylor-Goldstein equation. We show that when buoyancy 
forces are sufficiently large to alter the zeroth-order inviscid instability problem, they 
also enter the equations for the basic state and cause the mean velocity and 
temperature fields to be coupled. 

In order to make progress with an analytical solution of the strongly nonlinear 
instability problem associated with longitudinal vortex instabilities, we use the 
asymptotic structure given by Hall & Lakin (1988) in the context of small-wavelength 
Gortler vortices. In this limit, which corresponds to the far downstream behaviour of 
a fixed-wavelength vortex, the vortices are confined to a finite part of the boundary 
layer, and indeed where they exist the mean state adjusts to allow them to remain 
neutral. We show that in forced-convection boundary layers the vortices occupy a 
region adjacent to the wall and that the thickness of this region increases linearly with 
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Grashof number. The results we present are for similarity solutions of the nonlinear 
vortex-mean flow interaction problem but previous experience with the related Gortler 
problem (Hall 1988; Hall & Lakin 1988) suggests that the structure of the non-similar 
solutions is not significantly different. 

A significant result which we find is that for Prandtl numbers less than unity 
favourable pressure gradient flows can have inflexional streamwise mean velocity 
profiles induced by vortices. This suggests that a major role of vortex instabilities might 
be to modify favourable pressure gradient flows to make them unstable to the relatively 
much more dangerous inviscid instabilities. We investigate the Rayleigh instability 
problem for such flows and show that vortices induce a class of unstable Rayleigh 
waves over a large range of wavenumbers. 

The procedure adopted in the rest of this paper is as follows. In 92 we formulate the 
non-dimensional equations governing vortex instabilities in heated boundary layers. In 
93 these equations are solved for small vortex wavelengths and in 94 a similarity 
solution is obtained. Some large Grashof number properties of the similarity solution 
are discussed in 9 5  where we show the importance of the Prandtl number in 
determining the shape of the induced mean flow. In $6 we discuss the inviscid 
instability of the vortex states discussed in 993-5, and finally in 97 we draw some 
conclusions. 

2. Formulation 
Consider the viscous flow over a semi-infinite flat plate with a typically lengthscale 

L in the flow direction. Suppose that the fluid speed at infinity is U,u,(x*/L),  where 
x* measures distance along the wall. We define the Reynolds and Grashof numbers R 
and G by 

(2.1 a, b) 

Here v is the kinematic viscosity, g the acceleration due to gravity and p is the 
coefficient of expansion of the fluid. Note also that slightly different versions of the 
Grashof number are used elsewhere. The temperatures T, and T, respectively denote 
a constant reference temperature and the fluid temperature in the free stream. We 
concern ourselves with the limit R+ 00 with G held fixed and determine the strongly 
nonlinear vortex flows which occur in this limit. 

R = uo L ~ - ~ ,  G = L ~ ~ ( T , -  T , ) ~ v - ~ R - ~ .  

Suppose next that the wall temperature is given by 

and that we define dimensionless variables (x, y ,  z )  by 

( x , ~ ,  Z)  = ( x * L - ~ , ~ * L - ~ R ~ ,  z * L - ~ R ~  1, 

(u*, u*, w*) = U,,(U, R-b, R-h) .  

(2.3) 
where y*, z* denote distance in the normal and spanwise directions respectively. We 
define a dimensionless velocity field (u, u, w) associated with (x, y ,  z )  by writing 

(2.4) 
The pressure p* is then written in the form 

where p is a typical fluid density. The pressure is written in this form for convenience : 
the first two terms in the expansion are associated with the flow in the absence of 



Streamwise vortices in heated boundary layers 303 

vortices; the third term is a mean flow induced by the vortex which is associated with 
the z-dependent fourth term in the expansion. We shall make the Boussinesq 
approximation throughout this work so that changes in p can be ignored unless they 
are multiplied by gravity. The fluid density is given by 

p* = a 1  +P(P- T,)]. (2.6) 

T* = T,+(T,-T,)T. (2.7) 

The temperature field is then made dimensionless by writing 

In the Boussinesq approximation the continuity equation, momentum equations and 
energy equations are 

v * u  = 0, ( 2 . 8 ~ )  

(2.8 b) 

( u - V ) T =  (l/CT)VT, (2.8 c) 

where CT is the Prandtl number, V = (ax, a,, a,) and V2 = (a; + a: + R-l a:). The 
boundary conditions appropriate to (2.8) are 

u = 0, T =  F(x), y = 0, ( 2 . 9 ~ )  

u+u,, w+O, T-tO, y + ~ .  (2.9 b) 

Note here that if the instability is caused by for example, non-uniform wall heating the 
conditions at the wall should be modified as in Hall & Morris (1992). In the absence 
of any instabilities we write u = (U, V,  0), T = T and the basic state is determined in the 
limit R + co by 

(2. IOU) a, + Vy = 0, 
(2.1 0 b) 

(2.104 

(2.104 

(2.10e) 

(2.10j) 

Here we have set pnx = -u,u,, and introduced the buoyancy parameter S = G / R  
which we take to be O(1). The longitudinal vortex structure of Hall & Morris first 
occurs for G = O(Ro) but our ultimate concern is with the interaction of vortex 
structures and Taylor-Goldstein inviscid waves which exist for G / R  - O(Rn). Hence it 
is convenient at this stage to allow for a 'buoyancy' coupling between the x, y 
momentum equations, even though most of the results given in this paper will be for 
the case S = 0. Note also that (2.10~) can be integrated and the result substituted into 
(2.10 b) to give 

@@, + "py = U, u,, + uYy + S T, dy. 1 (2.11) 

This coupling has a significant effect on similarity solutions for the basic state. In 
particular if we choose u, = xn then the wall temperature T must be proportional to 
xin-; for a similarity soiution to exist. 
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In Hall & Morris the linearized version of (2.8) was solved for the case n = 1 ; it was 
shown that, at O(1) values of G, the longitudinal vortex instability induced by heating 
develops in a non-parallel manner. At higher values of G interest centres on the right- 
hand branch of the neutral curve where vortices of wavenumber a are neutral for 
G N a4. In fact this high-wavenumber regime is important because a disturbance of 
fixed physical wavelength will correspond to large values of the local Grashof number 
and wavenumbers are sufficiently large values of x. Thus the regime is particularly 
relevant to experiments where the vortex instability is caused by very small background 
disturbances which must evolve over a significant distance before they develop in a 
nonlinear manner. It is with the latter nonlinear problem that we will concern ourselves 
in this paper. 

3. The strongly nonlinear evolution equations for small-wavelength 
streamwise vortices 

The nonlinear structure which we develop in this section is based on the related 
analysis of Hall & Lakin (1988) for Gortler vortex flows. The major difference between 
the problems however is that in the convection problem small-wavelength neutral 
vortices occur near to the boundary whilst in the Gortler problem the vortices move 
away from the wall to the position in the flow where Rayleigh’s criterion is most 
violated. This difference leads to significant differences in the corresponding nonlinear 
structures. In fact the heated boundary layer has some similarities with the strongly 
nonlinear Taylor vortex problem, Denier (1992). However, the fact that the Taylor 
instability occurs in a bounded region causes even the Taylor and convection problems 
to differ significantly at high values of the appropriate control parameters. 

In the convection problem, small-wavelength vortices feel the local strength of the 
destabilizing buoyancy force through aT/ay,  the vertical gradient of the basic 
temperature field. In general, this gradient is a maximum at the wall so the instability 
is initiated there. In fact it was shown in Hall & Morris (1992) that in the neutral case 
the dominant balance is between spanwise diffusion and buoyancy effects in the y 
momentum equation and between spanwise diffusion and the convective operator in 
the energy equation. It is this balance which leads us to the appropriate generalization 
of Hall & Lakin (1988) to the present problem. 

Suppose then that a vortex of wavelength a exists in a region of depth O( 1) adjacent 
to y = 0. Since we have assumed that G / R  is O(1) we must consider the case when 
a = O(Rf). Thus we write 

G =  &a4+ ... with G / R  = S +  ... . (3.1 a, b) 

In order to recover the situation when buoyancy is not important we must then 
consider the second limit S+O. The neutral right-hand branch modes for a % 1 have 
temperature, pressure and velocity perturbations 6, $, fi, 0, + such that 

The first of the above scalings follows from our earlier remarks concerning the 
balances Ge - D,,, 6,, - OTu whilst the remaining balances follow from the choice of 
balances p z  - w,,, u,, - vgu, uy - w, in the z ,x  momentum equations and the 
continuity equation respectively. We then fix the overall size of the disturbance so that 
the mean flow and temperature field corrections driven by the disturbance are 
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comparable with the unperturbed flow. Thus we require that li.Vzi - 0(1) - a.V6; we 
therefore expand u, v, w,p and T appearing in (2.8) in the form 

(3.3 a) 

(3.3b) 
(3.3 c) 

(3.3 4 

u = U, + a-igl(x,y) + . .. + a-'[V,(x,y) E+C.C.]+ . . ., 

w = [W,(x,y)E+c.c.]+ ..., 
p = [aP,(x,y)E+c.c.]+ ..., 

v = co+a-fcl(x,y)+ ...+ u[~,(x,y)~+c.c . ]+ ..., 

T =  To(x,y)+a-%c(x,y)+ ...+ u-*[8,E+c.c.]+ .... 
In (3.3) the function 2E = eiaz, C.C. denotes complex conjugate and ... denotes terms 
smaller (in terms of a) than those immediately before this symbol. Notice also that the 
mean (in terms of z) part of the pressure must be expanded as 

and that the spanwise velocity component has no mean term. Furthermore, we have 
anticipated that the correction terms in (3.3) to the mean and fundamental are O(a-3) 
smaller than the dominant terms. This choice can be inferred from the fact that the 
correction terms to the mean must be comparable to the depth of the transition layer 
in which the vortices decay to zero. Since the depth of this layer is governed by the 
scalings of the linear neutral problem it must be of depth O(a-g), see Hall & Lakin 
(1988). 

Equations for the vortex 

obtain 

p = qo(x, y) + af ql(x, y) + . . . (3.3n 

If we substitute (3.3) into (2.8) and retain the leading-order fundamental terms we 

V,,+iW, = 0, u,+ V,C,, = 0, 60,- V, = 0, (3.4 a-c) 
W,+iPo = 0, 8,/(r+ V, z, = 0. (3.4d, e) 

These equations determine only U,, V,, W, and Po in terms of O,, and in fact the 
equations are only consistent if 

We integrate this equation to give 

where we have satisfied the required boundary condition on at y = 0. The 
temperature profile (3.4f) is that temperature distribution which enables a vortex of 
wavenumber a 9 1 to remain neutral. Without any loss of generality we will now 
assume that the fundamental temperature disturbance 8, is real. 

Equations for the mean 
If we substitute the expansions (3.3) into (2.8) and equate the leading-order mean 

terms in the continuity equation, x, y momentum equations and the energy equations 
and use (3.3) we obtain 

il,, +Do, = 0, (3.5a) 
(3.5b) 

(3.54 

&&+l =o. 

To = Y(x)-y/&Y, (3.4f) 

uo cox + Do a,, = - Sq,, + u, u,, + ii,~, + ga,, GI,, 
q,, = %> (3.54 

u, qz + Do T,, = (1 /r) z,, + f ~ { T o ,  GI,. 
The y momentum equation above can be integrated directly to give 

(3.5e) 
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The function appearing in (3 .5~)  can then be replaced by F - y / &  and then (3.5~2, 
b, d) can be integrated to find q, go, 21,. It is instructive at this stage to seek a similarity 
solution of (3.5) in order to gain some insight into the nonlinear structure we have 
obtained. 

We recall that for the Falkner-Skan profile with u, - xn buoyancy forces can only 
be retained within the similarity solution structure if F - ~ 7 - 2 .  However (3.4f) 
implies that a similarity solution in the presence of vortices is possible only if 
F - x ~ .  Thus a similarity solution in the presence of both buoyancy effects and 
vortices is possible only if n = +. In fact the case n = f is of particular interest in 
vortex-wave interaction theory, since, as will be remarked upon later, the only possible 
similarity solution when small-wavelength vortices interact with Rayleigh or Taylor- 
Goldstein waves has n = +. In the next section we will discuss the n = + case in 
detail, but before doing so we will complete the description of the flow field for the 
more general non self-similar case. However we stress that the results that we obtain 
for this particular choice of n are typical of the other similarity solutions. 

The equations (3.5~2, b, d) must in general be integrated numerically with qo given by 
(3.5~) and % given by (3.4f). However, we can think of (3.54 as a first-order equation 
in y for 

5n I 

1-n 

and we formally write the solution in the form 

The function Vo(x,O) remains unknown at this stage and for small values of y the 
integrand behaves like U~,(X, y)yFz so that if we assume there is no reversed flow then 
this quantity is positive if Fz > 0. Thus for similarity solutions with n < 1, is a 
positive decreasing function near the wall and we expect that, since we do not 
anticipate the presence of vortices everywhere, the vortex will vanish at some value of 
the similarity variable 7. In fact for similarity solutions with values of n not satisfying 
this inequality the integrand becomes positive for large enough 7, thus the only major 
change is that the maximum of V, occurs away from the wall. We also expect that (3.6) 
will determine VZ, in a finite range of values for y in the non-self-similar case. 

The solution (3.6) is therefore valid for 0 < y < p and more precisely, near 
7, Vo - Iy -A and viscous effects come back into play. In fact a layer of depth u-i is 
required at p in order to allow 5 to adjust from algebraic decay for p-y >> a d  to 
exponential decay for y - 7  9 a-2. The required structure in this layer is virtually 
identical to that given by Hall & Lakin (1988) and so will not be repeated here. It 
suffices to say that Vo satisfies the second Painleve equation in this layer and that across 
the layer Uo, Uoy, Do, To, To, and qo are continuous. Thus above the transition layer we 
retain the expansions (3.3) but with all the z-dependent terms set equal to zero so that 
the leading-order problem for go, Vo, etc. in this upper layer is identical to that for the 
unperturbed flow. We can therefore write down the following ‘composite’ problem for 
the whole flow field: 

(3.74 tioz + COY = 0, 

J o  
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where H is the Heaviside function 

1, s > o  
0, s Q 0. 

H(s) = 

307 

(3.7e) 

The appropriate boundary conditions are 

v, = V0(x,O), uo = tJo = 0,  

Ug-fu,, T,+o, y+co,  

T, = 9, y = 0,) 

qo,oz(x, 0) = - Jom T,, dY. 

We note that at the point p where = 0 the functions uo, iz0,, vo, To, To, are to be made 
continuous and, since (Go, G) + (u,, 0) as y+ co, then yO(x, 0), ~,,(x, 0), must adjust 
themselves in order that this limit is achieved. Note also that the position p where V, 
vanishes will also be a function of x. In fact for numerical reasons it is more convenient 
to treat qo,(x, 0) as a third unknown to be iterated on until q,,(x, 0) + s: T, dy = 0. The 
numerical free boundary value problem specified by (3.7), (3.8) can be solved in 
principle by adapting the procedure described in Hall & Lakin (1988); however it was 
found in that paper that the form of the non-self-similar solution can be inferred from 
the self-similar ones by varying the parameter corresponding to 6. 

It remains for us to discuss the nature of the flow described above in the 
neighbourhood - of the wall. We recall that the solution which we have obtained has 

no-slip conditions at the wall so an inner boundary layer must be present as the wall 
is approached. We can see from (3.3a) that in the limit y+O the solution calculated 
above is such that 

u - yiio,(x, 0) + . . . + a-l[U,(x, 0)  E +  . . .I.. ., 

which suggests that a new structure will emerge when y falls to O(a-l). Thus we define 
a new variable 5 by 

5 = aY 

and seek a solution for 5 = O(1). An examination of the higher harmonics in (3.3), 
which are smaller than the fundamental for y = O(1), shows that for g = O(1) all 
modes are comparable. This is because the cascade of energy from the fundamental 
down to the harmonics is enhanced to such an extent by the vertical diffusion of 
vorticity, now comparable with spanwise diffusion, that the energy in the different 
modes is of a similar size. 

u = v = l .  2, T = J o- at the wall but &(x, 0) + 0. Of course the total flow must satisfy the 

Thus in the neighbourhood of the wall we must replace (3.3) by 

(3 .9~)  

(3.9b) 

(3.94 

(3.9 4 
(3.9e) 
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Note also that z-derivatives are of order u, it is therefore convenient to write z“ = uz. 
The zeroth-order approximation to (2.8) in the wall layer then becomes 

6, + Gi = 0, 6Gc + Gzii = zi, + Gz;, (3.10a, b) 
1 1  

66c+G6i = GT-@c+6cc+6EE, 66 5 +G$i = -@i+$cc+Gii, ( 3 . 1 0 ~ ,  d) 
Oi;+$G = (l/cr){Tj5+ GE}, & = 0. (3.10 e,  f) 

The above must be solved subject to 

& = f i = $ = O  

G 4 i o , ( x , 0 ) ~ + [ U o ( X , 0 ) E + C . C . ] ,  c-. 03, 
P + O ,  e m ,  
6-[Vo(x,0)E+c.c.], c+ 03, 
G+O, [+a, 

B-+%(X,O), 

and it is easy to show that a solution of the above system can be found by integrating 
from 6 = 00 to 5 = 0 using an appropriate asymptotic form for 5 % 1. Thus the wall 
boundary layer is passive even though it is fully nonlinear. Hence we can obtain the 
core solution for y = O( 1) without reference to the wall-layer problem, so we do not 
discuss further the latter problem. We shall now discuss self-similar solutions of the 
strongly nonlinear iteration problem (3.7)-(3.8). 

4. A self-similar solution 
We shall now concentrate on the special case 

u, = xi, y = xi, 

and introduce the similarity variable q defined by 

We then write 
r = y/xf. 

The free boundary problem (3.7)-(3.8) can then be written in the simplified ordinary 
differential equation form : 

(4.1 a) 

(l/a)g”-wg-2fg’} = -acrH(P){g‘P}’ ,  (4.1 b) 

(4.1 c) 

4 ‘ = g  (4.14 
f = f = O ,  r = o ,  f = 1 ,  q = g = o ,  r/J=cQ. (4.1 e)  

In addition we require thatf,f,  q, g and g’ are continuous at 7 = 7 where p = 0. The 
problem can be solved numerically by making guesses for @O), q(O), f”(0) and 

f” + 32f”f-f’ + l}  = &(q) - $qq ’  - $H( P) cf” P}!, 

H( P) { g -  1 + q/&} = 0, 
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FIGURE 1. The quantitiesf”(O), P(O), ?j for the similarity solution with S = 0, and (a) v = 1, 

(b) g = 5, and (c )  v = 0.2. 

integrating (4.1 a, b, d) to find p, f, and q yith g = 1 -q/&. At the point where 
? = 0 we then set the terms proportional to P in (4.1 a, b)  equal to zero and integrate 
these equations together with (4.1 d) to determinef, g and q for q > 7. This integration 
is carried out using the computed values off , f , f” ,  g, g’ and q found as q+q. For 



3 10 

1 .a 

0.8 

0.6 

f ’  
0.4 

0.2 

a 

P. Hall 

I I  

0 5 10 15 20 25 3( 

7 

25 

20 

15 

p 
10 

5 

0 

0 5 10 15 20 25 30 

7 

0 5 10 15 20 25 30 

’1 
FIGURE 2. (a) The function f ( v ) ,  (b) the function f’(v), (c) the function g(v), (d )  the function 

P (v ) ,  with S = 0, = 1, G = 2.0, 4.0, 6.0, 8.0. 

arbitrary choices of f(O),f”(O), q(0) the conditions f’(co) = 1, g(m) = 0, q(o0) = 0 will 
not be satisfied but we can perform a Newton iteration procedure on the wall values 
of p,y ,  g’ until the conditions at infinity are satisfied. 

Numerical solutions of (4.1) were in the first instance obtained for a range of values 
of 6 for S = 0, cr = 0.2, 1, 5.  In figure 1 we show the computed values of 7, p(0) and 
f”(0). We see that the solutions can be obtained for 6 greater than some finite value; 
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FIGURE 3. (a) The functionf(7). (b)  the functionf"(v), (c )  the function g(v), (6) the function 
V L ( ~ ) , w i t h S = 0 , ~ = 5 , G = 0 . 3 , 1 . 1 , 1 . 9 , 2 . 7 .  

in fact this critical value corresponds to the right-hand branch of the neutral curve. At 
the larger values of d used in the calculations the results suggest that 

?j - 6, P(0) - 6",(0) - 6-1. 
We shall comment further on this asymptotic limit i n  the next section. 

of d with 
In figures 2 4  we show the functionsf',f", g and VL in terms of 7 for different values 

respectively equal to 1, 5,0.2. It can be seen in each case that the boundary 
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FIGURE 4. (a) The functionf(v), (b) the functioq-”(T), (c) the function g(v), ( d )  the function 

P(v), with S = 0, u = 0.2, G = 17.5, 27.5, 37.5, 47.5. 

layer thickens as the Grashof number increases. In figures 2(b), 4(b) we note the 
discontinuity in f”’ which occurs at the transition-layer position 7 = 7. The 
discontinuity also occurs for the case r~ = 5 shown in figure 3(b) but at the values of 
6 used in the calculations the discontinuity is not apparent. In each of the calculations 
the function 9 decreases monotonically from its value at the wall to zero at 9 = 7. The 
temperature profiles shown in figures 2(c), 3 (c), 4(c) illustrate the large-G structure 
mentioned above. Thus as 6 increases, the interval over which g is linear in T,I itself 
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0 5 10 15 20 

7 
FIGURE 5. The function f ” ( y )  for S = 0, u = 0.2, & = 17.5, 27.5, 37.5, 47.5. 

increases linearly with 6. On the other hand as d is decreased towards its linear critical 
value the temperature profile approaches its unperturbed form. It is also clear from the 
calculated velocity and temperature fields that an important consequence of the mean 
flow being driven by the vortices is that the boundary layer thickness is increased from 
its unperturbed value. More precisely we note that in the presence of vortices the 
boundary-layer thickness is increased by a factor 6 from its unperturbed value. 

A significant difference between the calculations for the different values of u can be 
seen in figures 2(b), 3 (b), 4(b), namely that at the smallest value of u, 0.2, the function 
f” has a minimum in the region where the vortices exist and a discontinuity in the sign 
of its derivative across the transition layer. This result is significant because it means 
that the mean velocity profiles associated with f have inflexion points at the minima 
off”  and sign changes in the second derivative of the mean downstream velocity 
component at the transition layers. We stress that no such points were found for the 
cases u = 1, 5, which suggests that inflexion points can only be created by the vortices 
below some critical value of the Prandtl number. This means that in low Prandtl 
numbers flows, wall heating not sufficiently large to induce Taylor-Goldstein modes 
because S = 0 might still lead to highly unstable inviscid Rayleigh waves. The 
secondary instability of the flows induced by the vortices will be discussed in the final 
section of this paper. 

In figure 5 we showf” as a function of 7 for the case (T = 0.2. We note that the size 
of the jump inf” across the transition layer increases with 6. In addition when 6 
increases we see that the region between the wall and the inflexion point increases but 
that f” remains relatively small until the transition layer is reached. In order to 
understand this behaviour it is instructive to consider the limit d + co in (4.1) and see 
how the underlying flow structure evolves. This limit will be discussed in the next 
section, but before doing so we report on some calculations we have carried out for the 
case when buoyancy effects are present. In figure (~(Q-C) we show the quantities 
7, f”(0) and p(0) for the case u = 1, and S = 0, 1, 2. The velocity and temperature 
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profiles associated with the S = 2 calculations are shown in figures 6(d-g). We note 
here that the most significant difference between the S = 0 and S = 2 results is that the 
buoyancy effects causef to overshoot its free-stream value for a range of values of 71. 

5. The limiting flow structure for e+- 00 

We stress here that, although our asymptotic analysis is carried out on the similarity 
problem discussed in $4, the approach can be applied in a similar way to the non- 
similar problem in the limit x+ 00 with 6 fixed, see $7 for a brief discussion of this 
situation. 

In order to develop a large-6 solution of (4.1) it is first convenient to write (4.1 a, 
c) in the form 

(5.1 a) (i P)’ = - ( 1 / 3 a) { ( & - 7)f’ + 2f), 
+{(f2 - 1 - 2ff”)) +P{(&- 7)f’ + 2J) 

v(1 +iP) f” ’= > (5.1 6) 

which are valid if P > 0. 
The numerical results discussed in the previous section suggested that for 6 9 1 the 

vortices are distributed over a region of depth O(d) .  Hence we seek a solution of (5.1) 
with 7 = O ( 6 ) .  Actually, since 6 is always multiplied by n when it appears, it is more 
convenient to treat ng as a large parameter and define 

$ = r//Gv. (5.2a) 

It then follows that the right- and left-hand sides of (5.1 b) will balance i f f  - &T, 

f - &; we therefore write 

f = GnY($)+ ..., P = G d ( $ ) +  ..., (5.2b, c) 

and the zeroth-order problem obtained from substituting the above expansions into 
(5.1) is 

( 5 . 3 ~ )  
(5.3 b) 

If we assume that there is no sublayer structure near $ = 0 then (5.3) must be solved 
subject to 

and p(0) is a constant to be determined. It can be shown that for 7 > &, where no 
vortices exist, a large-(&) solution of (4.1) can only be developed if 

Yllll = (2/3n){cr(Y2-1-2YYI”)+ F([ l -$]  Y+2Y)} F2, 
($P)f = -(1/3~){(1-$) Y+2‘yf. 

Y = Y = 0, P = P(O), $ = 0 (5.4) 

Y + 1 ,  g+o,  r+(GT), 

Y = l ,  v=o, $ = 1 .  (5.5) 

so in addition to (5.4) we require - 
The nonlinear differential system specified by (5.3), (5.4), (5.5) can in general only be 
solved numerically and the solution will fix p(0) and YI”(0). However the expansions 
(5.2b, c) are not uniformly valid as $+ 1-  because in that limit P - (1 -$)_and so 
the constant term in the denominator of (5.1 b) will be comparable with I‘z when 
1 - $ - O(Gn)-’. In order to find the appropriate expansions in that layer we observe 
that in the neighbourhood of $ = 1 we can write 

Y = $+$+$, ;P= - (2/3n)(l+!P)($-l)+ ..., (5.6a, b) 
w 
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FIGURE 7. The quantities Y ( O ) ,  e(0) as functions of (r. 
fJ 

where is a constant determined by the solution in 0 < $ < 1 and $ is given by 

$ = c( 1 - $)l+U, (5.7) 
where c is a constant. It follows that in the neighbourhood of $ = 1 the expansion 
(5.2 b) must be modified to give 

- 
where q5 = (Gr)‘( 1 - $). The function $ is then found to be given by 

= ‘:[Q+2(T(1+?p) ll+‘ (5.9) 

The expansion (5.8) is valid until Q = 0 where the vortex vanishes. The solution found 
above is then matched onto the solution of 

f”+${2fy-p+ l} = 0 

satisfyingf(co) = 1. However, this outer layer is passive and so we do not pursue the 
solution further here. 

It follows from the large-& solution found above that if (T < 1 in this limit U“ wf” 
is a maximum in the layer near 7 = &. In fact from above it can be shown that for 
Q = O(1) 

(&)2(1-d )”’ i 20-(1+&) 
f”=- c(l+(T)(T((T-1) Q +  

Thus f” becomes large if (T < 1, consistent with our numerical work. Numerical 
solutions of (5.3) suggest that the constant c is always positive so thatf”’ is positive or 
negative near 7 = 6 r  depending on whether (T is less or greater than 1 .  Moreover, in 
the case (T < 1, f” attains its largest value near 7 = 6cr and this value - (G(T)~(~-~) .  
Since we can show that the solution for 7 > Go must havef” < 0 we see that the results 
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in figure 5 which showed a jump in the sign off'" at ?j are confirmed and indeed a 
similar result would be found for any value of cr < 1. Furthermore since a small-7 
solution of (4.1) shows that f'" is positive near 7 = 0, the continuity off'" in (0, $ 
implies the existence of an inflexion point in the velocity profile for any Prandtl number 
less than unity. 

Some numerical solutions of (5.3) are shown in figures 7-9. Figure 7 shows Y ( 0 )  and 
v(O> as a function of CT. The computed velocity field in the large-& limit similarly 
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agrees well with the full solutions. Of particular interest is the dependence of the 
function Y"' on $ and CT. In figures 8(a, 6) we show plots of !P' and Y"' as functions 
of 9 and CT, which confirm that inflexional velocity profiles exist only for cr < 1. At 
finite values of 6cr our calculations suggest again that inflexional profiles exist only for 
CT < 1 though an exhaustive check of this possibility in the (CT, G)-plane was not carried 
out. In the case cr =!= 1 the results of figure 7 suggest that for any CT > 1, Y"' is always 
negative whilst for c < 1, yllll is positive in an interval ($*, 1) for some $* < 1. In order 
to demonstrate the behaviour of yllll near (T = 1 we have in figure 9 plotted results for 
the cases = 0.98, 0.99, 1, 1.01, 1.02. We see that Y tends to a negative constant as 
Y+ 1 for c = 1, whilst for CT slightly less than 1, yllll becomes large and positive in a 
small interval near $ = 1. For (T slightly greater than 1 the function Y"' is always 
negative but increases significantly in magnitude near 9 = 1. We note that the finite 
value of Y"' for u = 1 occurs because the next correction term in (5.6a) when CT = 1 is 
proportional to 93. The implications of the above results for secondary instability 
theory will be discussed in 96. 

6. Rayleigh or Taylor-Goldstein inviscid breakdown induced by 
streamwise vortices 

Now let us consider the inviscid instability of the finite-amplitude vortex structures 
described in the previous section. The approach we take is based on the work of Hall 
& Horseman (1991) on the instability of Gortler vortices. The most important property 
of an inviscid instability in a boundary-layer flow is that it operates on the same 
streamwise lengthscale as the boundary-layer thickness. In terms of (2.8) this means 
that for the inviscid wave disturbance a/ax - Ri. In addition inviscid waves are time- 
dependent so that terms u,, must be added to (2.86, c). Thus we now write 

Here the first term corresponds to the combined mean flow-vortex state driven by 
buoyancy effects whilst the second term represents an inviscid travelling wave 
disturbance of arbitrarily small amplitude A .  We again denote the buoyancy parameter 
S = G / R  and then substitute (6.1) into (2.8) and equate terms of order A .  In the limit 
R + cc the zeroth-order approximation to this system is 

iaU+ V y +  W, = 0, 
ia(u-c) U+ Vuy+ = -iaP, 

ict(u-- c)  V = - P, + SO, 

ia(a- c) W = - P,, 
ia(u-c)e+ VTy+ WT, = 0, 

( 6 . 2 ~ )  
(6.2 b) 

( 6 . 2 ~ )  

(6.2d) 

(6.2e) 

Here we have replaced Q/a by the wave speed c and the appropriate boundary 
conditions are V = 0, y = 0, co. With the function u specified by the steady nonlinear 
vortex problem discussed earlier the system (6.2) and the boundary conditions 
constitute an eigenvalue problem 

a = a(c, S ) .  
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Note that if the basic state is dependent only on x,y then (6.2) can be reduced to 

ST' - 
(u-c)(vyy-a2V)-zIyy V = - - - - V ,  u- C 

which is the so-called Taylor-Goldstein equation. If buoyancy forces are negligible, 
S = 0, (6.3) reduces to Rayleigh's equation. However when ii is a function of z no 
simple generalization of (6.3) is available, but we can eliminate U,  V ,  W and 19 from 
(6.2) to give 

If S = 0 the above equation reduces to the equation obtained by Hall & Horseman 
(1991) in their discussion of inviscid instabilities induced by Gortler vortices. The 
solution of (6.4) is of course a non-trivial task bearing in mind the fact that ii must 
in general be determined numerically. Here we shall concentrate on the case when 
S = 0 so that we are in effect limiting out analysis to the determination of whether 
vortex instabilities induced by wall heating can trigger a rapidly growing Rayleigh 
instability. Thus we shall now confine our attention to the solution of the eigenvalue 
problem 

P y = 0 ,  y = o ,  P+O, y - f c o ,  

with ii(i(x,y,z) determined by the nonlinear vortex equations in the presence of wall 
heating but with S = 0. In particular we will investigate the case when ii corresponds 
to the small-wavelength solution discussed in $83 and 4. We recall that in that limit 
vortices are confined to a region of depth O( 1) adjacent to the wall with boundary layers 
of thickness u-* and a% at the wall and at the edge of the region of vortex activity 
respectively. Above the a-5 transition layer the flow is determined by the unperturbed 
boundary-layer equations and the mean parts of ii, iiy with respect to z are continuous 
across the layer. It follows that a solution of (6.5) can be sought with no z-dependence 
where vortices are absent. In the lower part of the boundary layer, where 5 expands as 
in (3.3a), we find that P takes the form 

P = Po + a-l Pl + aP2 P2 + aP3 P3 cos az + aP3 P4 + . . . , (6.6) 

where Po, Pl etc. depend only on x,y. If we expand a, c in the form 

(a, c) = (ao, c,) + a-l(a,, c,) + . . . 
then we find that Po, P3 satisfy 

and 

Equation (6.8) is simply the Rayleigh equation for a unidirectional flow Iso so that the 
vortex does not have a direct effect on the zeroth-order Rayleigh problem. However it 
does have a significant indirect effect because u0 is determined by the vortices. In the 
region above the uf transition layer (6.8) again gives the correct zeroth-order 
approximation to the inviscid stability problem. Across the layer Go, iiOy are continuous 

P3 = - 2(u, - coy [ uo Po,(iio - c0)-3ly. (6.9) 
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whilst uoYy is discontinuous. In fact this discontinuity in uoyy is smoothed out within the 
transition layer by viscous effects. An examination of (6.5) in the transition layer shows 
that as long as c, + go in this layer then Po, Po, are continuous across the layer. Similarly 
the u-l wall layer is passive so that, if we are not concerned with neutral waves 
propagating downstream with the mean downstream fluid speed in the transition 
layer, then it is sufficient for us to solve (6,8) with u, determined by the vortices in 
0 < y < 7 and by the boundary-layer equations for y > 7. For definiteness we consider 
the case when iio has the similarity form discussed in $4. Thus we write ii, = xy(q)  with 
f determined by (4.1). It is convenient to rescale a,, c, by writing 

so that the eigenvalue problem oi, = a,(t,, 6) becomes 

a, = oi,x-i, c, = t o x i  

(6.10) 

Po7 = 0, q = 0, P,+O, q +  co. 

In fact the similarity solution that we have considered is particularly important in 
vortex-wave interaction theory. In the latter theory, see Hall & Smith (1991), a small- 
amplitude Rayleigh or Tollmien-Schlichting wave system interacts with itself to drive 
a strong vortex field which itself acts back on the wave field. In the present context a 
Rayleigh wave-vortex interaction occurs if d in (6.1) is chosen appropriately. In this 
case the wave system drives the vortex in the critical layer and the fact that the wave 
system must remain neutral as it moves downstream means that similarity solutions of 
the inviscid equation describing the wave are possible only if n = 3. 

In the absence of wall heating the basic state hasf' determined by the Falkner-Skan 
problems for a pressure gradient proportional to x-i, and since the velocity profile is 
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non-inflexional no unstable inviscid eigenvalues exist. We saw in the previous section 
that inflexional streamwise velocity profiles are generated by wall heating whenever the 
Prandtl number c is less than unity. 

In figures 10 and 11 we show results that we have obtained by solving (6.10) for the 
case = 0.2 and a range of values of g. In our calculations we have kept oi, real and 
computed the corresponding complex value of to. We see in figure 10(a) that at each 
value of 6 there is a band of unstable modes present to the right of a finite value of oi,. 
Each mode becomes neutral and disappears when the wave speed is equal to the fluid 
speed at the inflexion point of the velocity profile. Note here that all our calculations 
were for cases where such an inflexion point exists. At sufficiently small values of 6 the 
basic mean profile approaches its unperturbed values and no inflexion points exist. The 
unstable mode persists for all oi, greater than the neutral value but has (oi, c^o)i tending 
to zero as oi, + 00. In this limit c,, approaches the fluid speed at the discontinuity inf" 
at the transition layer. An analysis of that limit shows that the present analysis breaks 
down when &, = O(1oga). In this wavenumber regime the Rayleigh wave has a two- 
layer structure (of depth a-f,   log^)^') at the transition layer and is effectively zero 
elsewhere. We do not give details of the behaviour for oi, - /log a1 because the mode is 
neutral there and the most unstable growth rates occur for oi, = O(1). We see that the 
wavenumber of the most unstable mode increases as the Grashof number increases, 
which is of course due to the thickening of the boundary layer. Some eigenfunctions 
associated with the modes are shown in figure 11. 

7. Conclusions 
We have shown that wall-heated boundary layers can support large-amplitude 

streamwise vortex structures which completely alter the boundary layer in which they 
develop. We have concentrated our attention on self-similar flows which enabled us to 
solve the mean flow-vortex interaction problem by reducing it to a set of nonlinear 
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differential equations. A significant result was that the mean state modified at zeroth 
order can have inflexion points whereas the unperturbed state does not. For the special 
case when the driving pressure gradient is proportional to x-f we found that inflexional 
profiles are only generated when the Prandtl number is less than unity. 

The importance of the inflexional profiles is that they are highly unstable to Rayleigh 
waves growing on a streamwise lengthscale O(R-g) shorter than that over which the 
mean state develops. This means that a boundary layer that is inviscidly stable in the 
absence of wall heating can be made massively inviscidly unstable by streamwise vortex 
restructuring of the boundary layer. It is of course relevant to question whether the 
significantly different mean flow character corresponding to the cases 0- < 1, 0- > 1 is a 
function of the particular similarity flow considered. In order to answer this question 
we note that the more general form of the similarity solution given by (4.1) with 
S = O i s  

q = y x l ,  (7.1 a )  

(7.1 b, c )  

v, = &), T, = x?g(q), (7.1 d, e )  

(7. I f  1 

n-1 

ir, = xnf’(r), = - $xnP1 [$(n - 1) qf’ + +(n + l)fl,  

f”+{$(n+ l>fS”-nf’z+nn> = -gf ’P2>/~(9) ,  

H( P) ( g -  1 + q/&) = 0, (7.1 h)  

f = f ’ = O ,  q = o ,  f ’ = 1 ,  g = o ,  q = c o ,  (7.1 i) 

In order to see whether inflexional profiles exist at large 60- we can repeat the analysis 
of 9 5 by seeking a solution for G. The expansion procedure follows that of 6 5 exactly 
and the key result is that the correction term $ in ( 5 . 6 ~ )  is independent of n and again 
proportional to ( - y? + l)r+l. This means that f” becomes large as @ .+ 1- and changes 
sign when 0- passes through 1. This result can be used to infer that f” is positive as 
y? + 1- for 0- < 1 and, with the fact thatf” must be negative for 71 > and for q + 1, 
we find that for any n the large-& limit leads to inflexional profiles for 0- < 1. This 
argument suggests that the results obtained for the special case n = 5 are typical and 
that inflexional profiles are produced whenever 0- < 1 at sufficiently large values of 
6,. In fact the large Grashof number of analysis of 35 can be reformulated as a 
large-x asymptotic solution of the full interactive problem. This can be done for 
u, - xn, 5 - xm for any positive m and it is found that inflexional profiles are again 
only created for Prandtl numbers less than unity. This suggests that, at sufficiently high 
Grashof numbers, all heated boundary-layer flows of fluids with Prandtl number 
less than unity are caused to become inviscidly unstable by a streamwise vortex 
restructuring of the flow. 

f; f’ ,g,g’ continuous at q = 7, where ?($ = 0. (7.lJ) 
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